Uncertainty-Aware Online Extrinsic Calibration: A Conformal Prediction Approach
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Problem : KITTI test for 95% intervals
e Deep learning-based online extrinsic calibration methods such /;\\ AYAN : . X v > Roll Pitch Vaw
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e First framework to estimate the associated uncertainty Calibration Network  Monte Carlo Dropout Conformal Prediction o Provides reliable intervals with desired level of contidence
e Combination of Monte Carlo Dropout [2] and Conformal e Gives valuable insights on calibration quality
Prediction [3]. Monte Carlo Dropout (MCD):
e Introduces stochasticity during model inference by applying dropout e Promotes trust through improved explainability
e (Generates multiple predictions to estimate uncertainty o o o
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What is Uncertainty Estimation in This Context? Ny &
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T : : 3 T Pitch: interval upper bound in a case
o model limitations (epistemic) - of high uncertainty (+0.25¢)
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e |arger uncertainty signals less confidence
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e Goal: obtaining intervals in which the truth is contained with at
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least a XX% probability (XX being a user-picked target)



